Nanoparticle electrode for batteries could make large-scale power storage on the energy grid feasible, say Stanford researchers. Stanford researchers have used nanoparticles of a copper compound to develop a high-power battery electrode that is so inexpensive to make, so efficient and so durable that it could be used to build batteries big enough for economical large-scale energy storage on the electrical grid – something researchers have sought for years.

Electrical Power GridThe sun doesn’t always shine and the breeze doesn’t always blow and therein lie perhaps the biggest hurdles to making wind and solar power usable on a grand scale. If only there were an efficient, durable, high-power, rechargeable battery we could use to store large quantities of excess power generated on windy or sunny days until we needed it. And as long as we’re fantasizing, let’s imagine the battery is cheap to build, too.

Now Stanford researchers have developed part of that dream battery, a new electrode that employs crystalline nanoparticles of a copper compound.

In laboratory tests, the battery electrode survived 40,000 cycles of charging and discharging, after which it could still be charged to more than 80 percent of its original charge capacity. For comparison, the average lithium ion battery can handle about 400 charge/discharge cycles before it deteriorates too much to be of practical use.

At a rate of several cycles per day, this electrode would have a good 30 years of useful life on the electrical grid. The electrode’s durability derives from the atomic structure of the crystalline copper hexacyanoferrate used to make it. The crystals have an open framework that allows ions – electrically charged particles whose movements en masse either charge or discharge a battery – to easily go in and out without damaging the electrode. Most batteries fail because of accumulated damage to an electrode’s crystal structure.

Because the ions can move so freely, the electrode’s cycle of charging and discharging is extremely fast, which is important because the power you get out of a battery is proportional to how fast you can discharge the electrode. The researchers chose to use a water-based electrolyte, which described as “basically free compared to the cost of an organic electrolyte” such as is used in lithium ion batteries. They made the battery electric materials from readily available precursors such as iron, copper, carbon and nitrogen – all of which are extremely inexpensive compared with lithium.