Fluxgate compass is an electromagnetic navigational instrument for determining direction relative to the Earth’s magnetic poles. It consists of a magnetized pointer (usually marked on the North end) free to align itself with Earth’s magnetic field. A compass is any magnetically sensitive device capable of indicating the direction of the magnetic north of a planet’s magnetosphere. Fluxgate compass is used as navigation instrument for aircrafts, ships, boats, and other land vehicles. Fluxgate compass is also used for land surveying systems.

Fluxgate compass is a simple electromagnetic device that employs two or more small coils of wire around a core of highly permeable magnetic material, to directly sense the direction of the horizontal component of the earth’s magnetic field. The advantages of this mechanism over a magnetic compass are that the reading is in electronic form and can be digitised and transmitted easily, displayed remotely, and used by an electronic autopilot for course correction.

To avoid inaccuracies created by the vertical component of the field, the fluxgate array must be kept as flat as possible by mounting it on gimbals or using a fluid suspension system. All the same, inertial errors are inevitable when the vessel is turning sharply or being tossed about by rough seas. To ensure directional readings that are adequately stable, marine fluxgate compasses always incorporate either fluid or electronic damping. An alternative is to use a 3-axis fluxgate magnetometer to provide a 3D flux vector, and the magnetic heading is derived from the flux on a plane perpendicular to gravity, thus providing immunity from pitching, and rolling.

Fluxgate Compass Vs Gyroscope Compass Navigation Systems

Fluxgate compasses and gyros complement one another nicely. The fluxgate provides a directional reference that’s stable over the long term, apart from changing magnetic disturbances, and the gyro is accurate over the short-term, even against acceleration and heeling effects. At high latitudes, where the Earth’s magnetic field dips downward toward the magnetic poles, the gyro data can be used to correct for roll-induced heading errors in the fluxgate output. It can also be used to correct for the roll and heel-induced errors that often plague fluxgate compasses installed on steel vessels.